AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

Level 2 Certificate FURTHER MATHEMATICS

Paper 2 Calculator

Materials

For this paper you must have:

- a calculator
- mathematical instruments
- the Formulae Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Time allowed: 1 hour 45 minutes

- You may ask for more graph paper and tracing paper. These must be tagged securely to this answer book.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must not be used.

1 Factorise fully $12 w+18 w^{2}$
\qquad
\qquad
Answer
$2 M$ is the midpoint of $P Q$.

Work out the value of a.
\qquad
\qquad
\qquad
\qquad
Answer \qquad

3 (a) Work out $3\left(\begin{array}{cc}4 & 2 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}2 & 0 \\ -1 & 5\end{array}\right)$
Give your answer as a single matrix.
Do not write outside the box

Answer \qquad

3 (b) $\quad\left(\begin{array}{cc}7 & a^{2} \\ b & -5\end{array}\right)\binom{2}{a}=\binom{78}{12}$
Work out the values of a and b.
\qquad $b=$ \qquad

Line B is parallel to line A and passes through the point $(2,1)$
The point $(d, 2 d)$ lies on line B.
Work out the value of d.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad
$5 \quad$ Work out all the negative integer values of x for which $\quad 3 x^{2}<48$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

6 Prove algebraically that when n is an integer

$$
\frac{(2 n+1)^{2}-(2 n-1)^{2}}{4} \quad \text { is always even. }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 How many integers between 200000 and 400000 can be formed using only the digits $\begin{array}{llllll}1 & 2 & 3 & 5 & 8 & 9\end{array}$
with no repetition of any digit?
\qquad
\qquad
\qquad
\qquad
Answer \qquad

8	A curve has equation $\quad y=x^{3}-5 x^{2}$
	At two points on the curve, the rate of change of y with respect to x is 4
8 (a)	Work out an equation, in terms of x, to represent this information.
	Give your answer in the form $\quad a x^{2}+b x+c=0 \quad$ where a, b and c are integers.

Answer

8 (b) Hence, work out the two possible values of x. Give your answers to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
Answer \qquad

9 The first three terms of a linear sequence are

$$
30 \quad 30+4 k \quad 30+8 k
$$

where k is a constant.
9 (a) Work out an expression, in terms of k, for the 4 th term.
Give your answer in its simplest form.
[1 mark]
\qquad
\qquad
Answer \qquad

9 (b) The 100th term of the sequence is 525
Work out the value of k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

10 Here are four sketch graphs.
Circle the letter of the sketch graph that represents $\quad y=3 \times 2^{x}$

A

C

B

D

11 Here is a right-angled triangle.

You are given that $\quad a>5$
Use trigonometry to work out the range of values of x.
\qquad
\qquad
\qquad
\qquad
Answer \qquad

12 Work out the gradient of the curve $y=\frac{12 x^{3}-8 x+3}{4 x^{2}}$
at the point where $x=-1$
You must show your working.
\qquad
Answer \qquad
$13 \quad A(-2,5)$ and $B(4,13)$ are points on a circle.
$A B$ is a diameter.
Work out the equation of the circle.
Give your answer in the form $\quad(x-a)^{2}+(y-b)^{2}=c \quad$ where a, b and c are integers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

Turn over for the next question
$14 \quad P Q R S$ is a cyclic quadrilateral.

Not drawn accurately

Angle $P S R=4\left(x+15^{\circ}\right)$
Angle $P Q R$ is 40° smaller than angle $P S R$.
Work out the value of x.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad degrees

15 Simplify fully $\left(\frac{x}{2}+\frac{3 x}{5}\right) \div \sqrt{\frac{x^{6}}{4}}$
\qquad
Answer \qquad

Turn over for the next question
$16 \quad$ Here is an isosceles triangle.
All the angles are acute.

The area of the triangle is $120 \mathrm{~cm}^{2}$
Work out the size of angle y.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad degrees

17 Solve the simultaneous equations

$$
\begin{aligned}
a+3 b-2 c & =4 \\
4 a-3 b+5 c & =-5 \\
2 a+b+3 c & =9
\end{aligned}
$$

Do not use trial and improvement.
You must show your working.
\qquad
$a=$
$b=$ $c=$
$18 \quad A B C D E F G H$ is a cuboid.

$$
\begin{array}{ll}
A B=40 \mathrm{~cm} \quad B C=9 \mathrm{~cm} & C G=20 \mathrm{~cm} \\
P \text { is a point on } H G \text { such that } & H P: P G=3: 7 \\
A P=25 \mathrm{~cm}
\end{array}
$$

Work out the size of angle APC.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[5 marks]

Answer \qquad degrees

19 Expand and simplify fully $\quad(3 x+4)(2 x-3)(5 x-2)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad
$20 \mathrm{f}(x)=2 x^{3}+11 x^{2}+12 x-9$
20 (a) Use the factor theorem to show that $(2 x-1)$ is a factor of $\mathrm{f}(x)$.
\qquad
\qquad
\qquad
\qquad

20 (b) Show that $\mathrm{f}(x)=0$ has exactly two solutions.
\qquad

21 Work out the values of x between 0° and

$$
2 \tan ^{2} x=3
$$

Give your answers to 1 decimal place.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad

Turn over for the next question

Using powers of 2 or otherwise, work out the non-zero value of x for which

$$
\left(16^{x}\right)^{x}=\frac{1}{2^{3 x}}
$$

You must show your working.
\qquad

Answer \qquad

END OF QUESTIONS

